基于GC-MS和FT-NIR结合化学计量学的干姜产地鉴别及挥发性成分含量快速预测研究
投稿时间:2024-09-25  修订日期:2024-11-05   点此下载全文
引用本文:
DOI:
摘要点击次数: 162
全文下载次数: 0
                       
作者中文名作者英文名单位中文名单位英文名E-Mail
余代鑫 YU Dai-xin 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine yudaixin0616@163.com 
尹梦廷 YIN Meng-ting 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine ymt2023@163.com 
郭盛* GUO Sheng 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine guosheng@njucm.edu.cn 
李洁 LI Jie 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine 15651635992@163.com 
徐柯 XU Ke 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine xuke010418@sjtu.edu.cn 
严辉 YAN Hui 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine yanhui@njucm.edu.cn 
尚尔鑫 SHANG Er-xin 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine eshex@163.com 
段金廒 DUAN Jin-ao 南京中医药大学 中药资源产业化与方剂创新药物国家地方联合工程研究中心/江苏省中药资源产业化过程协同创新中心/江苏省方剂高技术研究重点实验室 National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine,and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae,Nanjing University of Chinese Medicine dja@njucm.edu.cn 
基金项目:国家重点研发计划项目(2020YFC1712700); 国家中医药管理局中医药创新团队及人才支持计划项目(ZYYCXTD-D-202005);财政部和农业农村部国家现代农业产业技术体系项目(CARS-21)
中文摘要:目的:比较不同产地干姜挥发性成分的组成、含量和气味差异,并对主要成分构建定量预测模型,以期为干姜药材质量快速评价和产地鉴别提供方法参考。方法:采用顶空-气相色谱-质谱(HS-GC-MS)法对干姜药材的挥发性成分开展定性与定量分析,结合相对气味活度值(ROAV)解析干姜的关键气味组分;通过傅立叶变换-近红外光谱(FT-NIR)技术,结合偏最小二乘回归(PLSR)法建立干姜主要挥发性成分的定量模型。结果:从干姜药材鉴定出33个挥发性成分,其中倍半萜类成分约占52.69%,单萜类成分约占37.21%,含量较高的挥发性成分为姜烯(29.25%)、β-水芹烯(14.34%)和莰烯(8.69%);化学计量学分析显示,基于挥发性组分可实现干姜药材的产地区分;通过变量重要性投影值(VIP)筛选了影响产地区分的10个差异组分,VIP排名前三的分别为4-萜烯醇、(+)-环苜蓿烯、(-)-α-古巴烯。ROAV分析显示,α-蒎烯、芳樟醇、β-月桂烯、2-庚醇、龙脑对不同产地干姜的气味贡献度最大。FT-NIR结果显示,优化的NIR可以实现4个干姜产地的准确区分;建立的干姜中姜烯、β-水芹烯、莰烯的最佳PLSR定量模型的预测决定系数(R2p)分别为0.932、0.902和0.887,且预测相对分析误差(RPD)均大于2.0,表明PLSR模型的预测值和成分测定值具有良好的线性关系,模型预测效果良好。结论:本研究提出了一种融合多元分析技术的干姜挥发性成分综合评价方法,该评价方法的建立也可为其他药食同源类中药材的快速质量评价提供方法学参考。
中文关键词:干姜  GC-MS  FT-NIR  挥发性成分  气味解析  化学计量学
 
Rapid prediction of geographical origin and volatile content of Zingiberis Rhizoma based on GC-MS and FT-NIR techniques combined with chemometrics
Abstract:Objective: In this study, volatile composition, content, and odor of Zingiberis Rhizoma (ZR) from different regions and a content prediction model for key components were analyzed to provide methodological references in quality evaluation of ZR. Methods: Headspace-gas chromatography-mass spectrometry (HS-GC-MS) was used to analyze volatile components qualitatively and quantitatively of ZR from different regions and the ROAV values were used to select the key odor compounds. Fourier Transform-near infrared spectroscopy (FT-NIR) technique was employed to obtain the spectral information. Partial least squares regression (PLSR) was applied to establish a quantitative model to achieve content prediction of volatile components in ZR. Results: HS-GC-MS results showed that a total of 33 volatile components were identified, of which sesquiterpenes accounted for 52.69% and monoterpenes accounted for 37.21%. The most abundant compounds were zingiberene (29.25%), β-phellandrene (14.34%), and camphene (8.69%). Chemometric analyses showed that ZR from different regions could be accurately classified. A total of 10 key compounds were screened by variable importance projection (VIP), and the top three were 4-terpineol, (+)-cyclosativene, and (-)-α-copaene. The ROAV values showed that α-pinene, linalool, β-myrcene, 2-heptanol, and borneol exhibited high contribution to the ZR aroma. FT-NIR analyses showed that an accurate classification of different ZR regions could be achieved. The coefficients of determination for prediction (R2p) were 0.932, 0.902, 0.887, and the values of residual predictive deviation (RPD) were all greater than 2.0 in the PLSR models, indicating that the predicted values of NIR models and the measured values demonstrated a good linear relation, suggesting a great prediction ability of the models. Conclusion: This study demonstrated a comprehensive method that combined multiple analysis techniques to accurately realize the quality evaluation of ZR. This established strategy can also provide a new idea for quality assessment of other homology of medicine and food.
keywords:Zingiberis Rhizoma  GC-MS  FT-NIR  Volatile components  Odor analysis  Chemometrics
查看全文   查看/发表评论  下载PDF阅读器